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Fully developed air-flows through an equilateral triangular duct of 12.7 cm sides were 
investigated over a Reynolds number range of 53 000 to 107 000. Based on equivalent 
hydraulic diameter, friction factors were found to be about 6 yo lower than for pipe 
flow. Mean axial velocity distributions near the wall were describable by the inner law 
of the wall (when based on local wall shear stress) but the constants differ slightly from 
those for pipe flow. As expected, the secondary flow pattern was found to consist of six 
counter-rotating cells bounded by the corner bisectors. Maximum secondary velocities 
of about 18 yo of the bulk velocity were observed. The effects of secondary currents 
were evident in the cross-sectional distributions of mean axial velocity, wall shear 
stress and Reynolds stresses, and very prominent in the turbulent kinetic energy 
distribution. For the flow prediction, the vorticity production terms were expressed by 
modelling the Reynolds stresses in the plane of the cross-section in terms of gradients 
in the mean axial velocity and a geometrically calculated turbulence length scale. The 
experimental and predicted characteristics of the flow are shown to be in good 
agreement. 

1. Introduction 
Fully developed turbulent flows in straight non-circular ducts are helical in nature. 

The spiral motion is due to secondary currents which act in the plane normal to the 
channel walls and generate mean shear stresses to maintain equilibrium between 
Reynolds stresses and pressure gradients in the asymmetric cross-section. Secondary 
flows of this type are encountered in many turbulent flow geometries including 
triangular and rectangular ducts, eccentric annuli and parallel-flow rod bundles. The 
square duct has been studied the most extensively both experimentally (Nikuradse 
1926; Hoagland 1960; Leutheusser 1963; Brundrett & Baines 1964; Gessner & Jones 
1965; Launder & Ying 1972) and analytically (Launder & Singham 1971; Wilson, 
Azad & Trupp 1971; Launder & Ying 1973; Gerard 1974). Rectangular ducts have 
additionally been examined by Tracey (1965) and Hinze (1973). Other duct configura- 
tions which have been explored include, for example, an open triangular duct (Liggett, 
Chiu & Miao 1965), two square interconnected sub-channels (Lyalli971) and a circular 
pipe with one or two eccentric rods (Kacker 1973). In  recent years, rod bundles have 
received increasing attention, particularly from the nuclear power industry (e.g. Rowe, 
Johnson & Knudsen 1974; Rogers & Tahir 1975), since heat transfer is enhanced by 
secondary flows. However, there are still no reliable measurements of secondary flows 
in either square or triangular rod bundle arrays. The first attempt was apparently due 
to Hall & Svenningsson (1971) who used the triangular array facility of Kjellstrom & 
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I------ 
FIGURE 1. Cross-section of equilateral triangular test section. 

Stenback (1  970). Their results using a rotatable hot wire were not conclusive and they 
recommended further investigation. Similarly, although Trupp & Azad ( I  975) could 
infer the direction and approximate magnitude of secondary flows from momentum 
and energy balances, they were unable to measure the tiny secondary velocities via 
conventional X-probes and a three-wire probe in a simulated infinite triangular array. 
Carajilescov & Todreas (1976) have predicted mean axial velocity distributions and 
secondary flow fields for triangular arrays of rods with different aspect ratios. The 
predictions for axial velocity were in good agreement with experimental results ob- 
tained by laser-Doppler anemometry for one array ; however, the predicted secondary 
velocities could not be verified since measurements were inadequate. The present 
research evolved from a desire to test an equilateral triangular array of rods having 
unity pitch-to-diameter ratio (i.e. rods touching). This limiting aspect ratio is the only 
one that can be practically constructed to truly constitute a member of the infinite 
array series where secondary flows are confined to within each symmetric part of the 
sub-channel. But a tricuspid channel is difficult to build accurately; hence the 
equilateral triangular duct was chosen for its similarity and simplicity, and the fact 
that triangular ducts have received little previous attention. 

Nikuradse (1930) was the first to deal with turbulent flow in triangular ducts. He 
noted that lines of constant mean axial velocity (isovels) in these ducts tended to bulge 
towards the corners, and he confirmed the existence of secondary flows through flow 
visualization. Cremers & Eckert (1 962) published measurements of mean axial 
velocity and five Reynolds stresses in an isosceles triangular duct with a vertex angle 
of about 12". They reported that there was no experimental evidence of secondary 
flows a t  a Reynolds number of 10 900 although contour plots of axial velocity fluctua- 
tions strongly suggest the presence of secondary flows near the base. In  a similar 
channel (vertex angle of 20°), at double the Reynolds number, Kokorev et al. (1971) 
detected three cells of secondary flow in each symmetric half of the channel. Other 
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experimental investigations involving triangular ducts have mainly concerned the 
transitional flow regime (e.g. Cope & Hanks 1972; Bandopadhayay & Hinwood (1973). 

For fully developed turbuIent flow in an equilateral triangular duct, the secondary 
flow pattern consists of six counter-rotating cells bounded by the corner bisectors. 
For each cell, the circulation is from the high momentum central core region to the 
corner region via the corner bisector, with return along the wall and mid-wall bisector 
(see figure 1). This secondary flow influences mean axial velocity (8) and mean turbu- 
lent kinetic energy (k) distributions and acts to homogenize the local wall shear stress 
(7) .  The experimental portion of the present research consisted of measurements of 
axial pressure drop, local wall shear stress, distributions of mean velocities (U, V ,  W 
in the 5, y, z directions respectively) and five Reynolds stresses (not p”w), and power 
spectra of axial velocity fluctuations (u) in the test flow cell of the geometry shown in 
figure 1.  Measurements were conducted a t  Reynolds numbers, based on bulk velocity 
(Ub) and equivalent hydraulic diameter (Dh),  of 53000, 81 100 and 107300. The 
experimental results presented and discussed here include some of the results doou- 
mented by Gerrard (1976) as well as more recent refined measurements of Reynolds 
stresses and secondary velocities. 

The analytical part of the research involved numerical prediction of the flow 
characteristics. Unlike the square duct, there has been essentially no previous work 
done on triangular ducts since the pioneering efforts of Deissler & Taylor (1  959) which 
did not allow for secondary flows. The prediction of Kokorev et al. (1971) is limited to 
the wall shear stress distribution, whereas Gerard (1974) was unable to apply the finite- 
element technique owing to lackofexperimental data as input. The prediction technique 
described here employed the general elliptic finite-difference procedure of Gosman 
et al. (1969) and adopted the fully modelling procedure outlined by Launder & Ying 
(1973). The predicted results are shown to be in good agreement with the experimental 
data. 

- - -_ 

2. Theoretical analysis for flow prediction 
2.1. General 

In  the equilateral triangular duct, symmetry permits the flow cross-section to be sub- 
divided into six primary flow cells. Each of these cells is identical when viewed with 
respect to rotated co-ordinate systems (except for handedness of secondary circula- 
tion), and no net mass, momentum or energy is transferred across any boundary. 
A knowledge of the flow properties in any one cell is therefore sufficient to describe the 
entire flow field. The primary flow cell and Cartesian co-ordinate system used in the 
present investigation are shown in figure 1.  The conservation equations pertinent to 
flow prediction are outlined below for fully developed turbulent flow of a constant 
property fluid. 

y direction, 
The Reynolds equations are: 

a V  ap a2V a2V a 3  avul - 
p (7% + V g )  = - - +#u (- +-) - p  (% +a,) ; 

89 aY2 
z direction. 
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where u, v, w are the fluctuating velocity components in the x, y ,  z directions respec- 
tively, P is the mean static pressure, p and p are the fluid density and dynamic 
viscosity, and the overbar designates time-averaging. Along the y axis (wall boundary) 
the convective terms and the y direction gradient terms vanish from the Reynolds 
equations owing to the no-slip condition. Along the corner bisector, V = - 34w since 
no net flow crosses the boundary. Along the x axis (normal to mid-wall), equation (1) 
must vanish since there can be no net momentum transfer in the y direction across this 
boundary. In  fact, here, 7 = 0 everywhere so aV/az = 0 = a 2 V / W ,  a2V/ay2 = 0 since 
Vhas opposite signs on each side of the x axis, aP/ay = 0 = a2/ay  owing to symmetry, 
hence it can be readily shown that VW = 0 along this boundary. On the other hand, on 
this same boundary, a%/ay (like aV/ay) may have finite values since TiZ (like 7) has an 
antisymmetric distribution about the z axis. For this reason and because may 
have finite values along the z axis except at the wall and duct centreline, it is not 
possible to obtain a simple theoretical distribution for ZCW at this boundary from (3). 

2.2. The analytical model 
The stream function (+) is defined by 

p V  = a+/ax, p W = - a+/ay. 

The axial vorticity ( w )  is defined by 

Substituting (4) into ( 5 )  yields 
w = a W / a y  - a V/ax.  

The pressure gradients in (1) and (2) may be eliminated by differentiating (1)  with 
respect to x and (2) with respect to y ,  and subtracting one from the other. The result 
written in terms of w and + is 

- 
a 2 ( P  - ~ 2 )  + p  (a%$ -- a*=) = 0. (7) 

- p  ayax a22 

The vorticity and stream function (hence secondary velocities) fields for the triangular 
duct geometry may now be obtained by solving (6) and (7) providing the distributions 
of v2, w2 and VW can be described. 

For the axial velocity prediction, by assuming the eddy viscosity (pt) to be locally 
isotropic, (3) may be rewritten as: 

- -  

ap a a 0  al7 
P ( V & + W ,  =--+- p -  +- p -  

a0 
ax a y (  e a y )  3, e a x ) ,  
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FIGURE 2. Notation for Buleev length scale calculation. 

where the effective viscosity pe = p +p,. Substituting (4) into (8) yields: 

This equation was used to  obtain the mean axial velocity distribution based on the 
converged solution for the stream function. 

Ideally, a numerical prediction scheme should require only basic specification of the 
flow, i.e. duct geometry, flow medium, and bulk velocity or Reynolds number. The 
prediction model was therefore selected so as to eliminate any empirical input. For the 
vorticity production terms in (7), Launder & Ying (1  973) have rationalized, employing 
the following simple equations for the Reynolds stresses: 

where c is an assignable constant and 2 is a turbulence length scale. The latter was 
calculated from the geometric formula suggested by Buleev (1963), namely: 

where S is the distance from point P to the wall and angle B is defined in figure 2. 
Integrating (12) yielded: 

(13) 
1 1  1 1 - = - (sina+sinr)+- (sinP+siny)+- (sinS+sinE), 
1 22, 222 223 
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where the notation is explained in figure 2. The closed form (1 3) was used to calculate 
the turbulence length scale for each node. 

By modelling the Reynolds stresses in (7) via (10) and (ll), it was possible in 
principle to solve (6), (7) and (9) to obtain the flow characteristics. However, an eddy 
viscosity model was still required, and although this presented no substantial handicap, 
it was fundamentally preferable to employ the Prandtl-Kolmogorov formula : 

Pt = PCY(k),k (14) 

which interrelates local values of eddy viscosity and turbulence length scale through 
the local mean turbulent kinetic energy k = i(u2 + v2 + 3) and the proportionality 
constant c,. The rather widely used form: 

- -  

where a, is the effective Prandtl number for turbulent kinetic energy transport and 
c, is a constant related to turbulent kinetic energy dissipation, was then used for the 
additional auxiliary equation for k. The final computation scheme required solutions to 
(6),(7)[with(lO), ( l l )and(l3)] ,  (15)[with(l3)and(14)], and (9) [with(13)and(14)]. 
VaIues used for the various constants were c = 0.006, c, = 0.22, ak = 1.5 and cD = 0.39. 
With the exception of c, these values were the same as those used by Launder & Ying 
(1973) for the square duct case (c = 0.010). 

The heat transfer characteristics of the flow were obtained by solving the enthalpy 
conservation equation which may be written as: 

where R and h represent the time average and fluctuating component of specific 
enthalpy respectively, and @h is the Prandtl number of the fluid. The turbulent 
enthalpy flux terms were approximated by: 

where crh, is the turbulent Prandtl number, whose value was assumed equal to 0.9. 

2.3. Solution of the equations 
Thegeneralform of (6), (7), (9), (15) and (16) is: 

The new symbols in this standard elliptic form are identified for each equation in 
table 1. In  order to solve the set of equations, an upwind finite-difference technique 
based on the general elliptic procedure of Gosman et al. (1 969) was used with an irregular 
31 x 31 Cartesian grid covering the same primary flow cell in which measurements were 
made (figure 1 ). The nodes were closely spaced near the wall and corner region where 
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Equation q5 A B C D 
6 @ 0 l / P  1 --w 

7 w l l  

9 1 P+Pt 1 aP/ax = 47,/Dh 

16 Plah+PtfVh.t  0 

Note: 7, is the average wall shear stress. 

TABLE 1 

the variables have steep gradients. Nodes on the corner bisector boundary were 
achieved by maintaining the spacing of nodes in the two directions in the ratio of 
3 k  1. 

Regarding boundary conditions, the stream function is constant along all three 
boundaries; this constant was conveniently taken to be zero. The vorticity is zero at 
the two symmetry line boundaries. Near the solid wall, the vorticity was assumed to 
vary linearly with normal distance from the wall. Along the corner and mid-wall 
bisectors, the normal-to-boundary gradients of the mean axial velocity, turbulent 
kinetic energy and enthalpy were set to zero as is demanded by symmetry. A boundary 
condition for mean axial velocity was imposed on the first string of nodes in the fluid 
immediately adjacent to the wall. The grid was designed to have these nodes located 
beyond the viscous sublayer for the Reynolds number range involved. The 0 boundary 
condition was the familiar form: 

g = ( ~ / p ) t  [2.5 In (7*69zf)], (19) 

where zf is the dimensionless distance from the wall defined as 

where v is the kinematic viscosity. A boundary condition for turbulent kinetic energy 
was also imposed at these same nodes. This was of the form: 

= 7/(p2cpcD)', (21) 

the same as that used by Launder & Ying (1973). 
In the solution procedure, continuously updated values of 7 were used within the 

main iterative procedure. After each iteration step, local values of wall shear stress 
were computed at the second string of nodes from: 

using the current computed values of and k. The new r values were then used to 
revise the 0 and k boundary conditions via (19) and (21) before embarking on the next 
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step. It is noted that a similar boundary condition technique has been previously 
employed by Gosman & Pun (1 974). 

The heat transfer field for the flow was solved at different Reynolds numbers for the 
ca8e of a uniform average circumferential heat flux along the duct, and a uniform 
circumferential temperature distribution at any station. A semi-logarithmic? boundary 
condition law for the enthalpy was imposed on the first string of nodes in the fluid. This 
was of the form: 

where Bw is the mean specific enthalpy of the fluid a t  the wall, q" is the waIl heat flux, 
andP* is the Jayatilleke (1969) ' p  function' which accounts for the enhancedresistance 
to heat or mass transfer offered by the viscous sublayer and is given by: 

P* = 9.24[(ah/vh, t ) g  - 11. (24) 

3. Experimental facility and equipment 
3.1. Wind tunnel 

The wind tunnel portion of the present facility was that used previously by Trupp & 
Azad (1975) in their investigation of rod bundle flow. For the present work, the wind 
tunnel was modified to operate in the open-circuit mode. Following the fan section, air 
passed through a diffuser, two sets of turning vanes, a screen section, and a circular 
contraction cone before entering a transition section. In  this section, the flow area was 
gradually reduced and transformed to match the cross-section of the triangular test 
section. Air discharged from the open end of the triangular duct. 

3.2. Test section 
The triangular test section consisted of a 7.32 m wooden entrance length followed by 
a precision acrylic section. The overall length of the duct wa5 9-76 m and the length of 
the interior side walls was 12.70 cm. An interlocking construction as illustrated in 
figure 1 was used for both sections. It is estimated that variations in the side-wall 
lengths were less than f 0.25 mm and +_ 1.0 mm for the acrylic and wooden sections 
respectively. 

Provision for axial pressure gradient measurements was made by locating static 
taps (figure 1) at 15.24cm intervals along the duct length. The test plane for mean 
velocity and turbulence measurements was located about 133 equivalent hydraulic 
diameters from the test-section inlet, and 2.5 cm from the end of the triangular duct. 
Gerrard (1976) found that end effects were negligible at  this position. 

3.3. Traversing mechanisnt 

Accurate positioning of either a Pitot tube or a hot-wire probe in the test plane was 
achieved by using a traversing mechanism having three orthogonal directions of 
motion. Vertical motion (z  direction) was achieved by means of a DISA55H01 
traversing mechanism. This mechanism was mounted on two vernier callipers which 
allowed up to 15 cm of horizontal travel in the test plane. Motion in the axial direction 
was provided by two concentric tubes. The hot-wire probe could also be rotated con- 
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FIGURE 3. Distributions of (z)6 along horizontal traverses in triangular duct. 
0, z / H  = 0.056; 0,  z / H  = 0.195; 0, z / H  = 0.333. 

centrically by turning the probe support, and this angular rotation was gauged using 
a small acrylic protractor fixed to the support. 

The absolute position of the probe in the y direction was made by visual alignment 
of the probe with a scriber mark on the test-section base which located the mid-wall 
bisector. Probes were located in the z direction by observing their images as they were 
brought into contact with the shiny acrylic wall. The distance between the active 
section of a hot-wire probe and the wall was measured with a travelling microscope. It 
was estimated that absolute probe positions could be determined to within f 0.05 mm 
and 5 0.1 mm in the vertical and horizontal directions respectively. The relative 
positional accuracy was of course much better since resohtions were 0.01 mm in the 
z direction and 0.02 mm in the y direction. 

3.4. Instrumentation 
Two Pitot tubes, with outside diameters of 1.067 mm and 1.27 mm, were constructed 
from stainless steel tubing having inside to outside diameter ratios of 0.6. Mean axial 
velocity and wall shear stress measurements at the highest Reynolds number were 
made with the large Pitot tube used in conjunction with a Betz projection manometer. 
This manometer had a range of 0-400 mm H20 and an accuracy of k 0.05 mm H,O. 
A Fuess manometer (DISA 134B) and the smaller probe were used a t  the lower 
Reynolds numbers. The Fuess manometer had five ranges varying from 0-1 6 mm H20 
to  0-160mm H,O and an accuracy of f 0.5 yo of full scale. 

Turbulence measurements were made using constant-temperature linearized hot- 
wire anemometry. The anemometry systems were manufactured by DISA and 
consisted of two sets of 55M10 anemometers with 55DlO linearizers and 55D25 

3 F L Y  85 
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Centreline Average Friction 
Reynolds velocity velocity velocity Pressure drop 
number if (m/s) ub (m/s) u* (m/s) dP/dx (N/ms) 

63 000 14.4 11.6 0.670 20.3 
81 100 22.0 17.8 0.834 43.5 
107 300 28.4 23.2 1.05 70.3 

TABLE 2. Nominal teat Conditions. 

auxiliary units. These systems were operated in conjunction with DISA probes having 
1.25 mm sensing lengths Of 5 p n  diameter platinum-plated tungsten wire. The ancillary 
equipment consisted of a 55D31 digital d.c. voltmeter, two 55D35 r.m.s. voltmeters, 
a 55D71 dual summing unit, and a 55D70 correlator. 

Measurements of axial velocity fluctuations were made with a 55P01 single-wire 
probe with the sensing wire normal to the main flow and parallel to the test-section 
base. The data presented in this paper on Reynolds stresses and secondary velocities 
were obtained using a miniature 55P61 X-array probe. Values for 7 were checked using 
a rotatable 55P12 miniature 45' slanting probe. All hot-wire probes were calibrated 
in situ with the probe located at the duct centreline. A static calibration for the DISA 
M system consisted, for example for Be = 53 000, of typically 14 points over the range 
of about 8 m/s to 18 m/s with a correlation coefficient of 0.9997 for the straight line 
least-squares fit. 

4. Experimental results and discussion 
4.1. General 

Prior to undertaking detailed measurements, the apparatus was investigated 
thoroughly for flow symmetry a t  both mean velocity and turbulence levels. A typical 
result is shown in figure 3. This and other results documented and discussed by 
Gerrard (1976) indicated that the flow at the test station was, for all practical purposes, 
symmetric. The importance of having achieved this condition is obvious. It in turn 
also meant that comprehensive measurements could be confined to one primary flow 
cell. 

Detailed measurements were subsequently conducted at each of the three nominal 
test conditions outlined in table 2 where the average friction velocity (u*) is (7w/p)4. 
The bulk velocities were obtained by numerical integration of the mean axial velocity 
fields. Both Pitot tube and hot-wire measurements were made at  150 locations con- 
stituting the nodes of a grid covering the test flow cell. This grid was regular except 
for additional points near the wall, and included points on the symmetry line 
boundaries. 

4.2. .Friction factor 
The axial pressure distribution at each of the three test Reynolds numbers was 
determined from measurements at 64 static pressure taps spanning the length of the 
test section. The normalized distributions, referenced to the test plane, are shown in 
figure 4 together with straight lines faired through the data for comparison. No marked 
entrance region is evident. 
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FIGURE 4. Static pressure distribution along duct axis. 
V ,  Re = 53000; 0 ,  Re = 81 100; 0, Re = 107300. 
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FIQURE 5. Friction factor va. Reynolds number in equilateral triangular duct. 0, present experi- 
mental data; - - - -, present prediction; - - -,f = 0.184(K,)1'8 Re-0'2, K, = 0-936, Malak el al. 
(1975) ; -, f = 0.316Re-0'26, Blasius. 

The fully developed axial pressure gradient for each Reynolds number was deter- 
mined from a least-squares fit straight line to the data from the last 16 downstream 
taps. Friction factors (f) were then computed as Dh( - i?P/i?x)/&pU,2 to an accuracy 
estimated to be within 3 yo. These friction factors were found to be from 5 to S& yo 
lower than values predicted by the Blasius correlation for friction factors in smooth 
circular tubes. Similar deviations have been reported for other non-circular ducts, e.g. 

3-2 
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YlL 
FIGURE 6. Local wall shear stress distributions. Present experimental data: 0, Re = 53000; 
A, Re = 81 100; 0, Re = 107300. Present prediction: -, Re = 53000; - - - -. Re = 150000. 
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FIGURE 7. Comparison of measured and calculated wall shear stress distributions. -O-o-, 
present experimental data, Re = 53000, u*Dh/4v = 651; -.- a-, Kokorev el al. (1971) 
with allowance for secondary flow; __ , Gerard (1974), u*D,/4v = 500, no allowance for 
secondary flow; - - - ~ , Deissler & Taylor (1959), Re = 24000 or 900000, no allowance for 
secondary flow. 
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FIGURES 8(a, b) .  For legend see next page. 

by Leutheusser (1963) for square ducts, and Carlson & Irvine (1961) for isosceles tri- 
angular ducts. Figure 5 illustrates the above deviation together with a correction for 
the inadequacies in the equivalent hydraulic diameter concept which has been sug- 
gested by Mdak, Hejna & Schmid (1 975). This correction which includes a geometrical 
factor in the correlation of friction factor and Reynolds number data gives a good 
representation of the present limited data. 

4.3. Local wall shear stress 

Local wall shear stress distributions for t,he test flow cell were determined by the 
Preston technique using the appropriate correlation of Pate1 (1965). The measured 
distributions of the axial component of wall shear stress at  the three Reynolds numbers 
are shown in figure 6 after normalization by their integrated values. The distributions 
are qualitatively similar to those for rectangular ducts. Peak values are shifted 
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FIGURE 8. Isovel plots in primary flow cell. (a) -, from present experimental data, Re = 63000, 
U*Dh/4V = 651; - - - -, Gerrard (1974), U*&/4V = 500, isovel values are bracketed. ( b )  
Re = 81 100. ( c )  Re = 107 300. 

towards the corner and, as shown by figure 7, this is contrary to predictions which 
do not allow for the secondary flows such as those presented by Deissler & Taylor 
(1959) and Gerard (1974), but similar to the predictions of Kokorev et aE. (1 971) who 
allowed for the secondary flow. This behaviour can undoubtedly be attributed to the 
tendency of the secondary flow to  equalize wall shear stress around the perimeter of 
the channel. 

4.4. Mean axial velocities 
Mean axial velocity distributions were measured at the test station by a Pitot tube for 
three tunnel speeds. All mean velocity calculations were based on actual properties in 
the tunnel and included density corrections for variations in relative humidity. No 
corrections were made for velocity gradient or turbulence effects on the Pitot tube; 
however, the wall proximity correction suggested by Ower & Pankhurst (1966) was 
applied. Excluding turbulence effects, it is estimated that the experimentally derived 
mean velocities are accurate to within & 1 %, while the estimated accuracy of the bulk 
velocityis +_ 2 yo. The isovels presented in figures 8 (a) (b), and (c) have been normalized 
by the bulk velocities. These distributions are somewhat Reynolds number dependent; 
most noticeably near the duct centreline where the normalized local velocities decrease 
with increasing bulk velocity. At higher Reynolds number, the isovels also extend 
farther into the corners. The distortion of isovels caused by the secondary flows is 
remarkable. This is clear by comparing (figure 8a)  the measured distribution with the 
pattern predicted by Gerrard (1974) for an equilateral triangular duct without 
secondary flows. This also indicates that secondary flows tend to decrease the velocity 
in the mid-wall regions and increase the velocity in the corner regions. Similar behaviour 
is shown later in conjunction with flow prediction. 

The inner law of the wall is well known to apply to pipe, boundary-layer and 
rectangular-duct AOWS, albeit with minor variations in the values of the two empirical 
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FIGURE 9. Mean velocity distribution in inner law co-ordinates based on local friction velocity. 
Re = 107300. Present experimental data: 0, y / L  = 0.0; 0,  y / L  = 0.409; A ,  y / L  = 0.614; 
0, y / L  = 0.818; - - - -, equation (25); - , rectangular duct, Leutheusser (1963), 

U+ = 2.46 In ~ + + 5 . 5 1 .  

FIGURE 10. Contour plot of (z))/u* distribution. Re = 53000. 

c0nstants.t This same situation was found to apply also to the equilateral triangular 
duct. Correlations involving average friction velocity showed (as might be expected) 
considerable scatter, whereas correlations based on local friction velocity entailed 
relatively small standard deviations (Gerrard 1976). The latter is illustrated in figure 9. 
The least-squares fit of the 44 data points was: 

u+ = 2.471nz++5-08, (251 
t True universality of the constants perhaps exists only for a particular z+ range for each flow 

since the upper limit on z+ probably varies with the type of flow. 
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FIGURE 11. Contour plot of (z)*/u* distribution. Re = 53000. 

FIGURE 12. Contour plot of (Z)*/U* distribution. Re = 53000. 

where u+ = D / ( ~ / p ) a  is the non-dimensional mean axial velocity based on local 
frict,ion velocity. This equation is plotted in figure 9 for comparison with the experi- 
mental data and the correlation for rectangular ducts due to Leutheusser (1963). The 
extent of the logarithmic distribution is reduced considerably in the corner region 
where the flow is influenced by the presence of a second wall; however, it holds 
accurately in the mid-wall region up to about Z+ = 1000. 

4.5. Reynolds stresses 

Although all Reynolds stresses except pvW were measured at the three Reynolds 
numbers, since the data were similar, only the results for Re = 53  000 are presented in 
this paper. Measurements of@)*, (g)*, G and UW were corrected for tangential cooling 
effects as suggested by Lawn (1969). The absolute accuracy ofthe experimental data is 
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FIGURE 13. Comparison of measured (-) and predicted (- - - -) k. Re = 53000. 

not known ; however, based on repeatability,? it is estimated that trend line accuracies 
are within about 3 yo for the normal stresses and about 10 % for 'uw. No figure is 
offered for UV as its values were very small over much of the flow cell, and its measure- 
ment was found to be very sensitive to probe alignment, channel match and wire 
cleanliness. 

Contour plots of constant normal stresses and mean turbulent kinetic energy are 
presented in figures 10-13, where the results have been normalized by the average 
friction velocity. These plots clearly indicate the effects of convection of turbulent 
kinetic energy by secondary flows. In  general, as is usual, turbulence levels are highest 
near the wall where the turbulence is produced and lowest near the duct centreline. 
But distortions similar to the bulges observed in the mean velocity field are evident. 
The low turbulence region extends far into the corner while the high turbulence region 
bulges outwards from the mid-point of the wall, thereby indicating a clockwise circu- 
lation of secondary flow. 

In  figure 14, a comparison of the distributions of @)*/u*, (F)*/u* and (G)*/U* 
along the mid-wall bisector is given. It is clear that velocity fluctuations parallel to the 
wall generally exceed those normal to the wall, although the two components have 
equal magnitudesin the central region of the duct. The latter considered in conjunction 
with the circular shape of the contours of constant (3)*/u* and (;2)4/z~* near the duct 
axis indicates that there is a small core region in which the transverse velocity fluctua- 
tions are essentially independent of orientation. This feature is consistent with the 
results of Laufer (1954) for pipe flow and the measurements of Brundrett & Baines 
(1964) for a square duct. The distributions of turbulent kinetic energy along normals to 
the wall are compared further with pipe and square-duct flows in figure 15. In the 

t Of the same probe or different probes or combinations thereof. For example, during the 
course of the work, at least five separate measurements were made of (ua)*/u* using three 
different probe types. 

- 
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FIQURE 14. Turbulence intensities dong mid-wall bisector. Re = 63000. 

0, (u2)*/u*; 0 ,  ( V ~ ) ~ / U * ;  A, (w2)i/u*. 
- - - 
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FIGURE 16. Contour plot of distribution. Re = 53000. 

FIGURE 17. Contour plot of E/ (u* ) *  distribution. Re = 53000. 

central region, the normalized values are generally somewhat higher than for pipe 
flow but lower than for a square duct. 

Concerning the two measured shear stresses, the contours of UV presented in figure 16 
show that UV was generally smallest in the mid-wall region and largest in the corner 
region and along the corner bisector. An unusual feature of the distribution is the 
region of small negative iE near the mid-wall bisector. Although these negative values 
are conceded to be comparable in magnitude to the precision limit, repeated measure- 
ments consistently indicated a distinct sign change when the probe entered this 
region. Brundrett & Baines (1 964) observed that the corresponding stress in the 
square-duct flow also changes sign within a primary flow cell. The existence of a 
negative region is consistent with the concept of a pasitive turbulent (eddy) viscosity 
since ao/ay is positive here (owing to secondary flow action - see figure 8) whereas it 
is negative elsewhere and zero on the mid-wall bisector. It is also noted that measure- 
ments showed that = (like r) has an antisymmetrict distribution about the z axis. 

t Of courae, if the X-probe is rotated 180° upon passing through the boundary into the 
adjoining flow cell, then Z appears symmetric (aa would v) since the y direction is effectively 
reversed. 
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FIauRE 18. Comparison of 5 measured by X-probe (0 )  and slanted-wire 
probe (0) at different vertical planes. Re = 53000. 
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F1amc.E 19. Measured ( , X-probe) and predicted (-) Wdistributions 
at different horizontal planes. Re = 53000. 

It is therefore logical that UV be zero on the mid-wall bisector, and this was basically 
substantiated by the measurements. 

Contour plots of uW are shown in figure 17. The distribution is basically as expected. 
It may be noted that z direction gradients in UW are much larger in the corner region 
than in the mid-wall region. Gerrard (1  976) has examined the x momentum balance 
[equation (3)] along the mid-wall bisector. The UW gradient was found to be dominant 
in the central region of the duct. The pertinent =gradient also contributed significantly 
to the balance here. However, nearer the wall, the predominant term was indicated 
to be convection of axial momentum by v. 
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FIGURE 20. Contour plots of predicted stream function distribution. Re = 53000. 
-, full source; - - - -, shear suppressed. Values shown are $ x los. 

4.6. Secondary vdocities 

Measurements of the transverse components of velocity were made only along certain 
vertical (for V )  and horizontal (for W )  lines rather than at  all points in the grid. This 
was part of a technique whereby rapid measurements could be made which eliminated 
errors due to relative channel drift of the X-probe. Repeatability was maintained in 
this manner to within about 15 yo. The results for 7 are shown in figure 18. The two 
probes differed most near the corner bisector. This was probably due to the influence 
on the two near walls. The results for w are shown in figure 19. From this distribution 
and figure 18, it is evident that the actual secondary flow is a single cell of clockwise 
rotation. Fluid is directed from the centre of the duct to the corner via a path parallel 
and adjacent to the corner bisector. The results indicate that the maximum secondary 
velocity occurs in the return flow along the wall where attains a value of about 14 % 
of the bulk velocity. Gerrard (1976) has demonstrated that 7 results a t  different 
Reynolds numbers scale satisfactorily on average friction velocity. 

5. Predicted results and discussion 
5. 1. Vorticity production and stream function 

The results predicted by the computational scheme described earlier are presented 
and discussed in this section mainly for a Reynolds number of 53000. The stream 
function distributions given by figure 20 were derived using different vorticity pro- 
duction source terms. In  one case, the normal stress term only was applied. In  the 
second case, both normal and shear stress terms were retained. It is evident that the 

penetration of the contours into the corner is mainly due to the shear stress term. This 
in turn has a direct effect on secondary velocity magnitudes in the corner region as can 
be seen in figure 21. Since the agreement between both predictions and the experi- 
mental data is generally good elsewhere, this suggests that normal stress vorticity 
production predominates over most of the duct cross-section, the exception being the 
corner regions where the shear stress term contributes significantly. This differs from 
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FIUWRE 21. Comparison of predicted (-, full source; - - - -, shear suppressed) 
and measured (0 )  results. Re = 63000. 

FIUURE 22. Contour plot of predicted 7. Re = 63000. Values shown are 7 / U a  in per cent. 
0 indicates centre of secondary flow (v = 0 = r). 

the square-duct case where, according to the measurements of Brundrett & Baines 
(1964), the normal stress term predominates everywhere. All predicted results discussed 
hereafter were obtained using the full vorticity production source terms. 

5.2. Secondary velocities 

The predicted (full source) secondary velocities are compared with the experimental 
datat in figure 21 ( 7 )  and figure 19 ( w). The agreement is good except near the wall 
where in fact the measurement accuraay may have deteriorated owing to wall effect on 
the probes. Figures 22 and 23 show the predicted results more fully. 

t X-probe data except (for v) for the station nearest to the corner. 
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FzauRE 23. Contour plot of predicted r. Re = 53000. Values shown are r/Ua in per cent. 
0 indicates centre of secondery flow (v = 0 = r). 

FIauRE 24. Comparison of predicted (- - -) and measured (-) 5 results. 
Re = 53000. Values shown are u/Ub.  

5.3.  Mean a&al velocity distributions 
Figure 24 shows the predicted effect of the secondary flows on the mean axial velocity 
distribution. The agreement between the predicted and experimental distributions is 
good when viewed in terms of percentage differences. The contours are almost identical 
adjacent to the mid-wall bisector except near the duct centreline. The largest discre- 
pancies occur in the core region near the corner bisector. This can be partially attri- 
buted to the length scale calculations. An attempt was made to determine the validity 
of using Buleev’s formula for the case of an equilateral triangular duct. The turbulence 
length scale was calculated from the experimental data on shear stress, turbulent 
kinetic energy, and axial velocity gradients along the lines y/L = 0, and y / L  = 0.4 
from the formula 

with the value of c, the same as noted earlier. Comparison of these two distributions 
with the corresponding ones obtained from Buleev’s formula (12) is provided by 
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FIGURE 25. Comparison of Buleev’s length scale (-) with experimental va.lues 
(0, - - - -, C, = 0.22). Re = 53000. 

figure 26 where 2 is the normal distance from the wall to the corner bisector. It is clear 
that, for the region of 2 / z  > 0.6, (12) tends to overestimate the actual length scale. This 
means that by using this equation a more flattened axial velocity distribution will 
result. Nevertheless, despite this minor shortcoming, the authors do not hesitate to 
recommend employing the Buleev length scale since it produces reasonable results 
while avoiding experimental input to the prediction technique. 

The predicted turbulent kinetic energy field is compared with the experimental con- 
tours in figure 13. It is evident that the distortion in these contours is much larger than 
that of the axial velocity contours. The corresponding situation has also been noted 
for the square-duct case (Brundrett & Baines 1964; Launder & Ying 1973). 

5.4. Wall shear stress 

The predicted wall shear stress distributions for two Reynolds numbers are super- 
imposed on the experimental results presented in figure 6. The agreement is quite 
reasonable. The distributions confirm the tendency of secondary flow to equalize the 
wall shear stress along the wall. It is also of interest to note that, in the case of the 
equilateral triangular duct, the peak value of the wall shear stress is not displaced as 
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FIGURE 26. Stanton number dependence on Reynolds number. - - - -, equilateral triangular 
duct, present prediction; - , square duct, Launder & Ying (1973); - - -, pipe flow, St = 
0.023 (Re)-o.a (Pr)-O4', Pr = 0.7. 

far towards the corner as for the square-duct case. For the latter, several investigators 
have reported that the peak value is located at  y / L  21 0.5. 

5.5. Eflect of Reynolds number 

Friction factor dependence on Reynolds number was investigated by conducting a 
series of calculations with full source modelling. The predicted results have been super- 
imposed on figure 5. The predicted friction factors are only slightly below the experi- 
mental points. Launder & Ying (1973) observed a similar difference for the square- 
duct case which they attributed as being probably due to the Buleev method for 
calculating the length scale distribution in the duct. In  any event, both the present 
prediction and the equation of Malak et al. (1975) provide better values of friction 
factors than the Blasius equation. 

The distributions of predicted local wall shear stress (figure 6) do not show any 
significant tendency towards greater uniformity with increasing Reynolds number as 
is the case for rectangular ducts (Leutheusser 1963). The present experimental results 
(figure 6) also do not exhibit Reynolds number dependence over the investigated range. 

5.6. Heat tranqfer prediction 

As expected, the predicted isotherms within the flow field were qualitatively similar to 
the predicted pattern for mean axial velocity shown in figure 24. The results are not 
presented since there are no experimental data for comparison. Figure 26 shows the 
predicted relationship between Stanton number and Reynolds number and includes, 
for cornparison purposes, data for both square-duct and pipe flow. For a given Reynolds 
number, the Stanton numbers for the equilateral triangular duct and the square duct 
are within 10 yo of each other over the indicated Reynolds number range. The hea.t 
flux distribution around the periphery of the duct had a similar distribution to that of 
the wall shear stress with a maximum value at yIL 21 t. For square ducts, Launder & 
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Ying (1973) predicted a maximum value of heat flux a t  y / L  N 0.6, the same position 
as wall shear stress peaks. 

6. Conclusions 
The following conclusions are based on the above results and are applicable to fully 

developed turbulent flows in equilateral triangular ducts for Reynolds numbers in the 
range 5 x  104 to 1.1 x 106. 

(i) The measured and predicted friction factors are 5 % to 6) yo lower than those 
predicted by the Blasius equation. The ‘universal criterion relationship ’ proposed by 
Malak et al. (1 975) provides a satisfactory correlation of the present friction factor data. 

(ii) Owing to momentum transport by secondary flows, the wall shear stress over 
the central half of each wall is constant to within a few per cent. 

(iii) The mean axial velocity distribution in the wall region can be described by the 
inner law of the wall if u+ and z+ are based on local values of the wall shear stress. 

(iv) The mean axial velocity and turbulence fields are clearly influenced by the 
presence of secondary flows. The effect on the turbulent kinetic energy field is more 
pronounced than on the axial velocity field. 

(v) The normal Reynolds stress distributions are essentially independent of 
Reynolds number when normalized by the average friction velocity. 

(vi) The secondary flow pattern observed by Nikuradse (1930) was confirmed by 
direct measurements of the t and components. The actual pattern consists of six 
counter-rotating flow cells in which the flow is directed from the centre of the duct to 
the corner via the corner bisector. Thereturn flow is along the wall and the wall bisector. 
The 7 component of the secondary velocity has a maximum strength of about 1+ % of 
U, in the return flow along the wall. 

(vii) Successful flow predictions without experimental input to the vorticity 
equation can be achieved by expressing the Reynolds stresses in the plane of the 
cross-section by gradients in the mean axial velocity. Both normal and shear stress 
terms must be included in the vorticity production source term in order to provide 
accurate prediction in the corner region. The Buleev formula for the turbulence length 
scale is adequate for the equilateral triangular duct provided that the value 0.006 
is assigned to c in (10) and (1  1). The Launder-Ying model provides a useful engineering 
tool for similar flow problems; the present results increase the prospects of successful 
flow and heat transfer predictions in rod bundle arrays. 

(viii) For the heat transfer situation examined in this paper, the predicted results 
indicate that equilateral triangular ducts and square ducts have a similar St-Re 
relationship. 

The authors gratefully acknowledge the support provided for this research by 
National Research Council of Canada. 
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